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The Two-Dimensional Two-Component Plasma Plus 
Background on a Sphere: Exact Results 

P. J. Forrester I and B. Jancovicil '  2 
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An exact solution is given for a two-dimensional model of a Coulomb gas, more 
general than the previously solved ones. The system is made up of a uniformly 
charged background, positive particles, and negative particles, on the surface of 
a sphere. At the special value F = 2  of the reduced inverse temperature, the 
classical equilibrium statistical mechanics is worked out: the correlations and 
the grand potential are calculated. The thermodynamic limit is taken, and as it 
is approached the grand potential exhibits a finite-size correction of the expected 
universal form. 
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1. I N T R O D U C T I O N  

At the special  coupl ing  F =  q2/k a T =  2, where q denotes  the magn i tude  of  
the charges,  T the t empera tu re ,  and  kB Bol tzmann ' s  cons tan t ,  the classical 
two-d imens iona l  o n e - c o m p o n e n t  and  t w o - c o m p o n e n t  p l a sma  systems of  
poin t  par t ic les  can be solved exact ly  in a n u m b e r  of  different geometries.  In  
the one -componen t  case tl-3~ the ca lcu la t ion  is based  on the V a n d e r m o n d e  
de t e rminan t  ident i ty  and is pe r formed  in the canonica l  ensemble,  while in 
the t w o - c o m p o n e n t  case 14-7~ it is based  on the Cauchy  de te rminan t  ident i ty  
and is pe r fo rmed  in the g rand  canonica l  ensemble.  Also, in the one -c ompo-  
nent  case the classical  Bo l t zmann  factor  at  F = 2  is i somorph ic  tSI to a 
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squared wave function for N noninteracting fermions in two dimensions, 
subject to a uniform magnetic field and confined to the lowest Landau 
level. The grand partition function of the two-component plasma at F =  2 
is isomorphic (5~ to the generating functional of the two-dimensional free 
Fermi field. 

In Sections 2 and 3 we unify the exact calculation of the particle 
correlations for one-component (-') and two-component (7) plasma systems 
on a sphere. This is achieved by introducing a new formalism based on a 
determinant identity t9) which interpolates between the Vandermonde and 
Cauchy identities. In fact the formalism is of general applicability in the 
sense that it is not restricted to the sphere domain. The exact calculation 
is performed in an ensemble with a uniform background charge density of 
given total charge -Nq, a given number N of positive particles, and in 
addition a variable number M of pairs of positive and negative particles 
which is controlled by a fugacity (. In the limit ( ~  0 the canonical ensem- 
ble of the one-component plasma is reclaimed, while in the limit N ~ 0 it 
is the grand canonical ensemble of the two-component plasma which is 
reclaimed. 

In the infinite-plane system the correlations for the two-component 
plasma plus background system at F =  2 are already known from the work 
of Cornu and Jancovici, (~~ who used the formalism for the two-component 
plasma in a field (5~ to perform the calculation. This suggests an alternative 
approach, considered in Section 4, to the system on a sphere: at the 
north pole fix a point charge Nq and then use the formalism of ref. 5. Of 
course the north pole becomes highly singular, as we expect that N par- 
ticles of negative charge will accumulate about this point. However, due 
to the screening of the charge-charge correlations, we would expect this 
not to affect the correlations between charges away from the north pole. 
In fact, we find that this method reproduces the exact correlations of 
Section 3. 

The grand potential OR can be calculated by integration with respect 
to ( of the expression for the density of negative charges. The large-R 
asymptotic expansion of OR is of particular interest, as for a Coulomb 
system on a sphere it has been predicted that (6~ 

I2R-I2~ ~ l n  R (I.1) 

independent of the details of the plasma. In Section 5, (1.1) is verified. 
In the Appendix, it is shown how the partition function for the one- 

component plasma on a sphere can be calculated within the formalism 
introduced in Section 2. 
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2. F O R M A L I S M  BASED ON A D E T E R M I N A N T  IDENTITY  
W H I C H  INTERPOLATES B E T W E E N  THE V A N D E R M O N D E  
A N D  C A U C H Y  IDENTIT IES 

In this section the generalized (with position-dependent fugacities) 
grand canonical partition function for the two-component plasma plus 
background system at F = 2  will be expressed as the determinant of an 
integral operator. This allows the one-component and two-component 
plasma systems to be solved using the same technique. We will assume that 
the domain is the surface of a sphere for calculating the particle correla- 
tions in Section 3. However, the formalism could also be carried through 
in the other domains for which the one- and two-component plasmas are 
solvable, in particular the disk and semiperiodic boundary conditions. 

On the surface of a sphere of radius R, the electric potential created 
by a particle of charge q at the angular distance ~b from it is 12~ 

~b(~) = - q ln{ [2R sin(~b/2)]/l} (2.1) 

where l is an arbitrary length scale (to be taken as unity) and 2R sin(O/2) 
is equal to the distance from the particle along the chord. This potential is 
indeed the Coulomb potential on a sphere, in the sense that, for a globally 
neutral system, the charges generate a total electric potential which obeys 
the Poisson equation: the spherical Laplacian of the potential equals -2 r t  
times the charge density. 

Representing two particle positions by spherical polar coordinates 0 
and ~0 (0 is the angle from the north pole and ~0 is the usual other polar 
angle) and similarly 0' and qr we find that their angular distance ~b obeys 
the identity ~2~ 

s i n  = I~/~ ' -~ 'Pl  = IPP'I /~ p 

where 

i '9 
Ct = C O S ~  e ~/- ,  Oe-i~'/2 (and similarly ~', fl') (2.2b) fl = - i sin 

The coordinates 0c and fl are referred to as the Cayley-Klein parameters. 
Consider now a system of N + M particles of charge q with coordinates 

specified by Cayley-Klein parameters ct), fl) ( j  = 1 ..... N + M), M particles 
of charge - q  with coordinates specified by Cayley-Klein parameters ~j, flj 
( j  = 1 ..... M), and a uniform neutralizing background. From (2.1) and (2.2), 
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the full Boltzmann factor (including the constants from the background- 
particle and background-background interactions) is readily calculated as 

M = ( l__~ r( ~- +M) erN'-/4 -r,, 
W(N+M, N; F) K2RJ I-[ [flj[ +m 

j = l  

N + M  

• I-I IP)I r~N-'~IDI r (2.3a) 
j = l  

where 

D ' -  I-II~J<*<'M(Uk--UJ) I-II<J<~<'N+M(V*--VJ) (2.3b) 
"I--[N+M (U - -  

I"I~/----1 l l k = l  , j Uk) 

with 

and vj := ~,. (2.3c) uj:=/~j ,~, 

Thus the generalized grand canonical partition function, with one-body 
potentials with Boltzmann factors a(O', ~o') and b(O, ~o) coupling to the 
positive and negative charges, respectively, and with N fixed and M 
summed over, is given by 

3r(a, b) 

=ANt ~. 1 ~'-M ( 1  ~rMR4 M 
~=oM!  (N + M)! \2-R/ 

[~+M ( ~)-r,,-~, 
x l-[ dO) sin 0~ sin 

I_ 

x l-[ dOi sin 0/ sin (2.4a) 
/=1  

where 

f]" dcp} a( O~, q~)) l 

f;"d~o,b(O,, ~o,)J lD] r 

A ur = R2N \~-~j erN"/4 (2.4b) 

Actually, the integrals in (2.4a) are divergent, because particles of opposite 
sign have a tendency to collapse on each other, as described by the possible 
vanishing of the denominator in (2.3b). This divergence already occurred 
for the two-component plasma, tS~ From now on, the divergences are to be 
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understood as suppressed by some short-distance regularization [see Eqs. 
(5.3)]. 

In the case N = 0  (two-component plasma) D can be written as a 
Cauchy determinant, while in the case M = 0  (one-component plasma) D 
can be written as a Vandermonde determinant. In the general case we 
have 19) 

~ =  

where 

and consequently 

D = ( - 1 )MIM- 11/2 det A 

" 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

V l  . . . . . . . . . . . . . . . . . . . . . . .  [ ) M + N  

u N - - I  N - - I  
. . . . . . . . . . . . . . . . . . . .  D M +  N 

1 1 

ld I - -  V 1 U I - -  [ M  + N 

1 1 

/ ' /M - -  UI /gM - -  U M +  N 

(2.5a) 

(2.5b) 

do, I(o,;...)-. l ~ I . ~ ; . . .  
g l  Ill /= | 

" l ~, f(n(m,--v',) ) fo dO) f(O);...)---,-~ k, -K~ ;"" 
,n~ = 1 

nj = I 

(2.7) 

where O denotes the ( M +  N) x ( M +  N) zero matrix. 
Consider now the generalized grand partition function (2.4a) for F =  2 

with the substitution (2.6). Suppose we discretize the integrals in (2.4a) by 
making the replacements 

, ,26, [D[ - = d e t  iN+ 
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where 0 < v~, v'~, v2, v~_ < 1. The domain available to the particles now con- 
sists of separate sublattices for the positive and negative charges (v~ ..... v[ 
are to be chosen so that no two lattice points overlap). We impose the 
constraint that the number of lattice points available to the positive 
charges, K'~K[, is N greater than the number available to the negative 
charges, K~ K2. The replacements (2.7) are exact in the limit Kl ..... K~ ~ oo, 
so we can write 

, ~ [ a , b ] = A N , ,  lim ~ M! 
KI, X i,  K2. K~ . . . .  ( M  + N)! M = 0  

M + N  ( 1 KI I (  - - 2 ( I - - N )  x I-[ i~ ,  l S (sin/~(m~--v', 7z(m~-- v',)'~ 

2,t(n;-- v')')'~ 
y, a \  ,v,, ' - / j  

- . j  = 1 

x ]_[ ~- 1 M  ~ (sin r @ n , - v , ) ' ~ / ' .  ~ ( m , - v , ) )  -2r  
1= I ~KI ,,,t=, "~I } k  s'n 2K, J 

x - -  y '  a \  -~] , K--7 i a  + (2.8) 
K2 ,,i = 1 

where the coordinates implicit in A are taken as lattice points according to 
the prescription (2.7). 

We now make the crucial observation that the expression after the 
limit in (2.8) is precisely the expanded form of a single determinant: 

tim do,(,+[O 
~2[a, b] = Au2 K.. K i, X,, X', -- ~ iC (2.9) 

where 4' is a 2K't K'_, x 2K't K~_ diagonal matrix with the first N diagonal 
entries zero and the rest one, O is the K't K~_ x K'~ K[ zero matrix, and 

1 . - , l  l 
K',K--~ v;'k' | t,=.,..., u l 

. . . .  [ j , k , ) = [ l l ) , . . . , { K i K , )  | 

[ KIK~(ujk--Vj,k,)J(Yk)=~Jl),....(K, K2) J 
- ( j ' k ' I = t l l ) , . . . ,  (K~K',,) 

C= L [v}# a.#k,]lj'k')=(,ll.....(K',KSl [K  ~------g,,k,)'/IJ'k')=ltl),....(KiK~)/ 
p = l . . , . , N  - . . - ( Jk )=I I I ) , . . . , JKIK2)"  

(2.lOb) 
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(the upper index on the matrix symbols [ .  ] labels the rows, while the 
lower index labels the columns), where 

bjk = sin[ n ( j - -  v~ )/K~ ] { sin[ re(j-- v~)/2K~ ] } -'-~l + m 

x b ( n ( j -  v l ) /Kl ,  2re(k-  v2)/K2) (2.11a) 

aj,k, = sin [ n( j '  - v'l )/K', ] { sin [ n ( j '  - v'l )/2K'l ] } -21, - m 

x a(rc(j' -- v'~ )/K'I, 2n(k' - v',_)/K'~) (2.1 lb) 

and ujk denotes the coordinate u = o~/fl with 0 and q~ therein evaluated at 
the lattice point O = n ( j - v l ) / K l ,  ~0=2rc(k-v,_)/K2 (and similarly for the 
meaning of vj,k, in terms of v = o~'/fl'). 

From (2.10) and (2.11) we see that the limit in (2.9) can be formally 
taken to give 

Z,_[a, b] = AN2 det(X) (2.12) 

where the operator X acts on vectors 

Ial 
~b := aN (2.13) 

f(O, ~o) 

k g(O, ~,)j 

and is defined by 

where 

A 1 X~ := AN 
F(O, ~o) 
G( O, qg )_] 

A i : = i  dOsinO d~o [sin(0/2) ] N- '  

• [cot(0/2) ei~'] j -  t g(O, q~) 

(2.14) 

(2.15a) 



344 Forrester and Jancovici 

F(O, ~o) = f(O, q~) - dO, sin 0, ~,sin sin 

x f2- g(O,, (pl)b(01, rPl) 
d(Pl 

!~o cot(01/2) e i*'' - cot(0/2) e '~~ 

~ I ( ~ )  ] " ' (  0) G(O,~o)=g(O,~o)+i aj cot e - ~  s in} 
j = � 9 1  

+ ~ - ~ : d O l s i n O , ( s i n ~ ) - N - ' ( s i n ~ )  N - '  

f2,~ f (OI ,  (P I) a(01, (P l) 
X ] d(j91 

~o cot(0,/2) e i~,,--cot(0/2) e -'~' 

- -N 

(2.15b) 

N-- �91  

a(O, ~o) 

(2.15c) 

In the case N = 0 ,  the generalized grand partition function (2.12) 
reduces to the known expression ~51 for the grand partition function of the 
two-component plasma. In the other limiting case, r = 0, corresponding to 
the one-component plasma, the resulting expression for the generalized 
partition function is new; we show in the Appendix how to use (2.12) in 
this case to reclaim the result of ref. 2 for the exact evaluation of the parti- 
tion function. In the general case N g: 0, ~ :~ 0, we have not been able to 
compute the grand potential directly from (2.12), but we shall obtain it 
from a density computed in the next section. 

3. E V A L U A T I O N  OF THE C O R R E L A T I O N  F U N C T I O N S  

The fully truncated n-particle distribution functions can be obtained 
by functional differentiation of the logarithm of (2.12). Analogous to the 
situation in the two-component plasma limit, 15~ the distributions can be 
expressed in terms of functions which play the same role as the Green 
functions of ref. 5: 

Gs, s,((OI, (Pl), (02, (Pz)):= 6,.,.,.,J((0,, ~01), (02, ep2)) 

- Asls2((01, (/~ (02, (/02)) (3.1) 

where sz, s2 = _+, 6((0,, ~0j), (02, ~o,_)) denotes the Dirac delta function on 
the surface of the sphere: 

R 2 dOsinO dq)H(O,~o)O((O, rp) , (O' ,q;))=H(O' , (p ' )  (3.2) 
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for any continuous function H(O, fO), and A,,~,_ is defined in terms of X -~ 
by 

cqj ............. oq^, FI(O,., ~o,_) Gl(O,, ~o,_) 

X - t =  - 

~NI . . . . . . . . . . . .  O[NN FN(02'  ~02) GN(02, ~2)  

ftCOl,~oiJ"'fxcOI,q~l) A++((01,~01),(02,~02)) A+_(COl,~ol),CO,_,~p,)) 
gt(Ol,~oi)'' 'g,v(Oi,qoi) A_+((Ol,(Pl),(Oz, q)2)) A__((Oi,q~j),(O,_,~o,)) 

(3.3) 

The one-body density of particles of sign s is 

p.,.(O, cp) = G.~.,.((0, q~), (0, cp)) (3.4a) 

the two-body truncated density is 

7- 0 P.,.,.,.,_(( i, cp~), (02, q),_)) 

= -G,.,.,.,((Ol, (Pl), (02, cPz)) G,._,.,.t((02, (Pz), (01, q~l)) (3.4b) 

and similarly for the fully truncated n-particle distribution. 
Due to the rotational invariance of the correlations, it suffices to 

calculate r p.,.,.,., with one of the particles fixed at the south pole (p.,.r.,., will 
then depend on 0 only). Thus, from (3.4), it suffices to calculate 

Q,.,.,.((0, ~), (rr, r  := G.,.,.,._,(0, (p) (3.5) 

From the definition (3.3) of the A.,.,.,,_ as elements of the inverse of the 
operator X, the definition (2.14) of X, and (3.1), it follows that the func- 
tions G +(0, ~o) and G+ +(0, q~) satisfy the coupled equations 

r~ 2rt 

Io d0sin 0 Io dq~ [sin(0/2)] N-t [cot(0/Z)ei~'] j - l  G+ +(0, q~) 

= ~I /R  z, j =  1 (3.6a) 
t0, j = 2  ..... N 

i~R c" [ . 02,~u-i 
G-  +(0",, ~01) +--~- Jo d O z s i n O z l s l n z )  (sin 0,) - ' - N  

I] " G ++(02, ~%) 
• dq~z cot(01/2) e ; ~ ' -  cot(0z/2) e i~~ 

i~ [sin(0,/2)] - ' - u  
= 2-R cot(01/2) e -i~"' (3.6b) 
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--ii~=i l cot ( ~ )  e-~*']J-l (sin ~ ) N - I  Gj(Tr) 

i f R "  ( s i n - ~ )  (sin ~ )  u -  +--2- fo dO2 sin 02 -N-] l 

ffn d~o2 G_+(O2, cP2 ) 
x cot(O2/2)e_i,p,_cot(O~/2)e_~+G++(Ol,cpl ) 

= 0 (3.6c) 

Also, G+_(0,  cp) and G__(O, qo) satisfy the same coupled equations, with 
the replacements 

G ++(O, cp)~G +_(O, q~), 

r.h.s, of (3.6a) ~ 0 

r.h.s, of (3.6b) --, 0 

r.h.s, of(3.6c) ~ - 

G_+(O, ~ ) ~ G _ _ ( 0 ,  r  

e a c h j =  1 ..... N 

i?, [ sin( O l /2 ) ] ~v- i e i*'' 
2R cot(O l/2) 

(3.7) 

Let us consider the coupled equations (3.67 for G_+ and G++.  We 
observe that these equations permit a solution of the form 

G + +(O, q , )=y + +(O) 

G _  +(0,  ~0) = y_  +(0)  e -i~' 

Gfln) =0,  j = 2  ..... N 

(3.8a) 

(3.8b) 

(3.8c) 

Substituting (3.8) in (3.67, changing variables t = c o s 0  in the resulting 
equations, and setting 

h_+(t)  
),_ +(0) = (1 - t) N/~- (I + t) I/2 (3.9a) 

h++(t) 
y+ +(O) = ( 1 - t) ~N- 11/2 (3.9b) 

then gives the coupled equations 

f l 1 2-1u-I)/2 dt, h+ +(t,) - - i - - 2nR 2 (3.10a) 
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h _ + ( t ) + 2 ~ i ~ R  dt2h++(t2)  
--1 

i~ 2( l +Nil2 (3.10b) 
2R 

f l h_+(G)  
- i . 2 - ( u - l ) / 2 G l ( n ) + 2 r ~ i ~ R  dt2 (1 + t2)(1 - t 2 )  N 

+ (I - t) - i N -  tl h+ +(t) = 0 (3.10c) 

Differentiating (3.10b) and (3.10c) with respect to t, substituting the 
first of the resulting equations in the second, and simplifying gives 

( 1 - t 2) h "  +(t) + ( N -  1)( 1 + t) h'_ +(t) - (2re(R) 2 h _ +(t) = 0 (3.11 ) 

This is the Gauss hypergeometric differential equation, in the variable 

s = (1 - t)/2 (3.12) 

with (in standard notation) 

a = - � 8 9  2 -- 4(2~R)2) 1/2] 

b = - �89 [ N  + (N  2 - 4(2rt(R) 2) 1/2] 

c = l - - N  (3.13) 

We note from (3.10c) that we require the solution of (3.11) such that 

h _ + ( s ) = o ( s  N-1  ) a s  s ~ 0  (3.14) 

[otherwise the intregral in (3.10c) does not exist; furthermore, (3.14) 
ensures that (3.10a) is satisfied]. The solution of (3.11) with this property 
is(ll) 

h_+(s )  = A s N F ( a + N ,  b +N;  N +  1; s) 

=AsN(1 --s)  F(1--a ,  1 - b ;  N +  1;s) (3.15) 

To determine A, we note from (3.10b) the requirement 

h +(s = 1) = i~ 21 +(o/21 (3.16) 
2R 

This gives 

i~ 21 +(N/2)F(I --a) F(1 - b )  
A = ~  F ( N +  1) 

(3.17) 
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Now that h_ + is known, the value of h + + follows from differentiating 

and 

G__(O,~o)=~2F(a+N+I)F(b+N+I)sinN+t(~)F(N+2) 

xF(a+N+l,b+N+l;N+2;sin2(~)) (3.21b) 

(3.10b) with respect to s, which gives 

1 h + +(s)=T-z~.~, h'_+(s) ,+~tgK 
1 ANs u- IF(a + N, b + N; N; s) (3.18) 4ni~R 

Reverting back to the original variable, using (3.12) with t = cos 0, and 
then to the original Green's function, via (3.9) and (3.8), we thus have 

G-+(O,q~) =e-i~'i~" F(1-a) F(1-b) (~) (~) 2--R I'(N + 1 ) cos sin u 

( ,(0)) 
x F  1 - a , l - b ; N + l ; s m -  ~ (3.19a) 

and, after a simple manipulation on the F functions, 

G++(O'~~ 0 ) F ( N )  9_ 

xF(a+N,b+N;N;sin2(~)) (3.19b) 

To solve Eqs. (3.6) with the replacements (3.7), we try for a solution 
of the form 

G _(0, c0) = y_ _(0) (3.20a) 

G+_(0,  ~o)= y+_(0)  e '~~ (3.20b) 

Fj(n) =0 ,  j =  1 ..... N (3.20c) 

Proceeding as in the calculation of G+ + and G_ + above, we find 

G+ _(0, q~) = G_ +(0, q~) (3.21a) 
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4. ALTERNATIVE EVALUATION OF THE CORRELATION 
FUNCTIONS 

In this approach, we put on the sphere a uniform background charge 
density of total charge - Nq and a point charge Nq at the north pole, with 
N fixed. Then, we add a variable number N + M of pairs of positive and 
negative particles. We expect that N negative particles will stick to the 
north pole, and therefore there will remain the background, N § M positive 
mobile particles, and M negative mobile particles, as in the previous 
section. 

Now, we can use the grand-canonical formalism, with the same 
variable number N § M of positive and negative particles. The charge Nq 
at the north pole generates a one-body potential, which can be taken into 
account through a charge- and position-dependent fugacity. From (2.1), 
when F := q2/k B T =  2, this fugacity is of the form ~[sin2(O/2)] ''N for a par- 
ticle of sign s (s = __ 1 ). 

The problem on the sphere can be transformed into a problem in the 
plane by the same stereographic projection as in ref. 7. Let P be the 
stereographic projection of a point M of the sphere, from the north pole, 
onto the plane tangent to the south pole. In terms of the spherical coor- 
dinates (0, rp) of M, the complex coordinate of P in the plane is 

0 
z = 2Re i~~ cot - (4.1) 

2 

The projection is a conformal transformation, with a conformal weight 

e ~ := sin-' 0 _ 1 
2 1 +(Izl'-/4R'-) (4.2) 

That is, an element of length dl at M and its projection of length Idz[ at 
P have a ratio dl/ l&l = e~ Also, in terms of the coordinates z and z' of the 
projections of the particles, the pair potential (2.1) becomes 

(0 (O~ x 
q ~ = - q q '  l n l z - z ' [ + - ~ + ~ )  (4.3) 

Since each particle interacts with N + M -  1 particles of the same sign 
and N +  M particles of the opposite sign, the co term in (4.3) gives a total 
one-body potential q2co/2; for F = 2 ,  this generates a factor e -~~ in the 
fugacity. Furthermore, in the computation of the partition function, the 
area element dS on the sphere can be expressed in terms of the correspond- 
ing area element d2z on the plane as dS = ea'~ Altogether, the system on 
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the sphere with a fugacity (e ~ and the pair potential (2.1) is equivalent 
to a system in the plane with a fugacity 

(4.4) 

and a pair potential - q q '  In I z - z ' l .  The N negative particles stuck at the 
north pole of the sphere are projected at infinity on the plane. 

The formalism for dealing with a plane system with a fugacity depend- 
ent on the charge and the position has been set in ref. 5. The n-particle den- 
sities can be expressed in terms of Green functions 3 g.,.,.,.,(r t , r2) (here rj 
stands for a position vector in the plane; zj = r/e~);  in the plane, the den- 
sities are 2n(e'~ and the two-body truncated densities are 
-sls,_(2rc(,)2e '~176 [g.,.,.,..,(rl, r2)l 2. They are the stereographic projec- 
tions of densities on the sphere, which therefore are 

p.,. = ( 2 n ( )  e - o ~ m  g.,.,(r, r )  ( 4 . 5 a )  

p~.~.,_((Ol, ~Ol), (02, ~2)) = - $ 1 s 2 ( 2 ~ )  2 e-~ .... lr_,l I g.,.,.,._,(rl, r2)l 2 (4.5b) 

where (0/, go/) is that point on the sphere which is projected at rj. It is 
enough to fix one particle at the south pole and to consider only g.,,.,.2(r, 0). 

For the present problem, Eq. (2.18a) of ref. 5, with now re(r) = 2n(e ~ 
becomes 

[(2n()'- e'~176 g+ +(r, 0 ) =  2~(6(r) (4.6) 

where 

N , 
A = e i'p -b r Ocp ~ co (r) (4.7a) 

[ 0 , 0  ] _ N t 
A + = e  -'~~ --~rr+r0cp ~co (r) (4.7b) 

Looking for a solution of the form g+ +(r, 0 ) = g +  +(r) and changing to the 
variable s=s in2(O/2)=e  ~ and to the function k ( s )=s -N/2g++,  one 
obtains from (4.6) 

s ( 1 - s ) - ~ s , _ + [ N - ( N + l ) s  ] -- (2re(R)2 k = 0, s r  (4.8) 

3 Ill Section 3 of tile present paper and in ref. 5, the Green functions have been defined with 
different irrelevant phase factors, which do not affect the physical quantities. 
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(4.8) is the hypergeometric differential equation. The two solutions are ~ ~1 
F((N+6)/2, ( N - 6 ) / 2 ;  N;s) and F((N+6)/2, (N-O) /2 ;  1; 1 - s ) ,  where 
O=(N' - -16n2(2R2)  ~/2. The second solution behaves like s -N§ as s ~  0; 
it would generate in pr+ +(0, zt) = - (2n() 2 s N- J Ik(s ) l  2 an unacceptable 
singularity s -^ '§ t as s = sin-~(0/2)---, 0, and it must be discarded. Therefore 

(4.9) 

From (4.6), near the south pole ( r = 0 ,  s = l ) ,  g++(r ,  0) behaves like 
- ~ l n r ~ - ( ~ / 2 ) l n ( 1 - s ) .  The F in (4.9) does have a logarithmic term 
since 

F ' 2 ' 

F(N) 

F((N+ 0)/2) F ( ( N -  6)/2) 

• I - 2 Y -  IP ( - ~ )  - ~b ( - ~ ) -  ln(1 - s ) ]  as s ~  1 (4.10) 

where F is the gamma function, ~h is its logarithmic derivative, and 7' is 
Euler's constant. The appropriate behavior is obtained by choosing 

F((N +O)/2) F((N--6)/2) 
C+ - - (4.11) 

F( N) 2 

Then 

g+ +(r, 0 '  ~ ~ [ - 2 Y -  IP ( N g - - ~ ) -  IP ( ~ )  - l n ( 1  - s ) ]  as s ~  1 

(4.12) 

By a similar calculation, from Eq. (2.18b) of ref. 5, one finds 

N + ~  N - O  ) 
g__(r,O)=C_sN/2+~F l + - ~ - - , l + ~ ; N + 2 ; s  (4.13) 

where 

F(1 +(N+6)/2)  F(1 + (N-O) /2 )  
C_ - (4.14) 

T ' (N+ 2) 2 
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such that 

sr (1 N + 3",, g__(r, 0 ) ~  [ --2~,-- ~ + ~- - - - )  

-- ~ (I  + - N ~ ) - l n ,  l - s ) ]  as s ~ l  (4.15) 

Finally, from Eq. (2.18c) of ref. 5, one finds 

((N+ 3)/2)((N- 3)/2) C+ ei~( 1 - s 2)1/2 s~U+ 1~/2 
g_ +(r, O) - N 2n~R 

( N+3 N - 3  ) 
x F  1 +- -~- - ,  1 + ~ ;  N +  1; s (4.16) 

Using the Green functions (4.9), (4.13), and (4.16) in (4.5b), one finds 

r I F((N+3)/2) F((N-3)/2) 0 
p + +(0, n) = - L n(2 F(N) sinN-J 

N 3 __N-3. N;sin 2 - (4.17a) xF  ' 2 ' 

Pr--(O'n)= --[ n~2F(I+(N+3)/2)F(I+(N-cS)/2)F(N + 2) sin~+ ~ -20 

x F  1 + - - - ~ ,  1 + - - - ~ ;  N+2;sin-" (4.17b) 

p~ +(0, n ) -  -p+  r_(0, n) 

[ ~ l'(l +(N+3)/2)F(l  +(N-3)/2)cos~sinN ~ 
= 2-n F(N+ 1) 

x F  1 + - - ~ ,  1 +- - - -~ ;  N +  l; sin 2 (4.17c) 

Thus, we retrieve the correlation functions derived in Section 3, Eqs. (3.4b), 
(3.19), and (3.21). 

It can be easily checked that the limit ~ 0 reproduces the one- 
component plasma results of ref. 2 and the limit N--* 0 reproduces the two- 
component plasma results of ref. 7. 

The thermodynamic limit giving a plane system can also be studied: 
N,R-~ oo, 0~0 ,  with fixed background density q:=N/4nR z, fixed 
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fugacity ~, and fixed distance r = 2R cos(0/2). By using one of Kummer's 
relations "~1 

( :) F(a, b; c; z) =(1  - - z ) - b F  c--a,  b; c; (4.18) 
z - 1  

one can rewrite (4.17a) as 

I F ( N - -  ~) F(cc) 
Pr+ + ( r )~  - tl~ F(N) e-"~/ZN'(rtqr2)-~ 

x F ( 0 q ~ ; N ; 1 -  N , ~ ]  2 (4.19) 
m/ r - / j  

where 0c = 7t~2/11. In the limit N ~  oo, N ~F (N -oO/F(N)  ~ 1 and 

where W is a Whittaker confluent hypergeometric functionJ tll Thus, in the 
thermodynamic limit, 

pr++(r) = -- [r//'(cc + l ) (x r / r2 )  -1/2 Wl/2_a,o(rgtlr2)] 2 (4.21a) 

Similar calculations give 

pr__(r) = -- [q~F(0c + 1)(m/r2) -~/-" W_ll,__~.o(nqr'-)] 2 (4.21b) 

p r +(r) = p r+_ = [qocl/2F(oc + 1 )(mlr 2) -l/z W_~. t/,_(mlr2)] z (4.21c) 

The results (4.21a) and (4.21b) had been previously obtained 4 in ref. 10. 

5. T H E R M O D Y N A M I C S  

In the present generalized grand-canonical formalism, the basic ther- 
modynamic function is the generalized grand potential I2 obtained from the 
generalized grand partition function: 

g2= - k B T l n  S (5.1) 

4 The sign of the background charge density has been chosen positive in ref. 10, negative in 
the present paper. Furthermore, there are sign inconsistencies at the bottom of p. 127 of 
ref. 10. 

822/84/3-4-3 
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From (2.4a), the density of negative particles is 

( M )  1 d 
p_  - 4nR2 - 8nR2 ~ ~ In S (5.2) 

Thus, we can obtain In S and /2  by integrating p_ /~  with respect to ~. 
The densities Ps given by (4.5a) should be independent of r and it is 

convenient to compute them at r = 0. However, for point particles, g.~.,.(0, 0) 
is a divergent quantity, as already noticed in simpler casesJ 5'71 For 
obtaining finite densities, we assume the particles to be small hard disks of 
diameter cr rather than point particles. This regularization ~5~ amounts to 
replacing gss(0, 0) by g.,.,.(a, 0). Since a is small, we can use (4.12) and 
(4.15), with 1 - s = a 2 / 4 R  2, in (4.5a), which gives the densities 

p + = n~-~ [ --2y-- ~ (N2------~6) - ~b ( - ~ )  + 2 In ~ - ] (5.3a) 

N+6"x (1 ln2R l 

Using ~( 1 + x ) -  O(x) = l/x, one easily checks that p + - p _  is equal to the 
background density r /= N / 4 n R  2. 

From now on, we only consider the case of a large system, using large- 
R expansions for fixed values of the fugacity ( and the background density 
tl = N / 4 n R  2. As R becomes large, an expansion of the ~ functions gives 

p -  = p +  --q 

= ll0t[ --21' -- ~h( 1 + 0~) -- In rrqa 2 ] 

1 _ ~2~b,(~) 1 + (5.4) 

where, again, ~ = n(2/pl. 
For ( = 0, S should become the partition function of the one-compo- 

nent plasma tz~ (the thermal de Broglie wavelength has been taken as 
unity) 5 

Z = eN'-/Z(2rtR) N ~ I  t p !  ( N - - p  -- 1 )! N! (5.5) 
p = 0  

5 Our definition of Z includes the usual l/N! factor which is not present in the "excess 
partition function" defined in ref. 2. 



2D Two-Component Plasma Plus Background on a Sphere 355 

as confirmed in the Appendix. The corresponding free energy f2(0)= 
_ f l - t  In Z can be expanded ~61 to give 

1Tg2(O)=4rcR2qln-~nE+~ln[(4~rl)l/2R]+l-2('(-1)+o(1) (5.6) 
k a 

where (' is the derivative of Riemann's zeta function. 
Using (5.4) in (5.2) and integrating from ( = 0  gives the large-R 

expansion 

1 =,1 12(O)+4rcR2q[o~(2y+lnzola2)+lnF(l+oO ] kB T g2 k~ ~ 
or. 2 or. f~ 

- - ~ - - } +  x2~b'(x) dx+o(1) (5.7) 

The quantity (kB T)-  1 ~ does exhibit the expected universal finite-size 
correction ~6~ (1/3)In R. That correction comes entirely from 12(0). 

APPENDIX 

When ( = 0  and a = b =  1, 

_E_,(a, b) =Z_, (A.1) 

where Z2 denotes the canonical partition function of the one-component 
plasma on a sphere. Using (2.12), we thus have 

Z2 =AN2 I-[ 2k ( A . 2 )  
k 

where the product is over all eigenvalues of the operator X. The operator 
X again acts on vectors (2.13), except that the component f(O, q~) is no 
longer present. The eigenvectors are therefore of the form 

I a!k) ] 

Ok = a~, l (A.3) 

and from (2.15) the eigenvalues and eigenvectors are specified by the 
equations 

2n 
2kaJ. k' = i l l  d0sin 0Io dcp [sin(0/2)] N- '  [cot(0/2) e'~'] j - '  g'k)(o, q)) 

(a.4) 
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(j  = 1 ..... N) and 

N 

2kgIk)(O, r =g(kl(O, q~) + i ~ aJ.k)[cot(O/2) e-iq~] j - I  [sin(O~2)] g - I  (A.5) 
j = l  

We look for solutions of the above equations of the form 

gl~)(O, ~p) = eik~'gk(O), k e Z (A.6) 

Substituting (A.6) in (A.4) gives 

( k )  _ _  a) - 0 ,  k ~ l - j  (h.7) 

f: 2ka} kl = 2gi dO sin 0 [sin(O~2)] N-I  

x [cot(0/2)] j -  ~ gk(O), k = 1 - j  (A.8) 

and use of these equations gives from (A.5) 

(2k-  1) gk(0) = 0, kr - ( N -  1)} (A.9a) 

and 

(1--2k) 2k=2~f0 dOsinO \ s i n~ )  ~cot~) 

F ( N + k )  F ( - k  + I) 
=4re F ( N +  1) ' k = 0 ,  - 1  ..... - ( N -  1) (A.9b) 

Equation (A.9a) gives the eigenvalues ).k= 1 for all k~ {0 ..... - ( N - 1 ) } ,  
while (A.9b) gives a pair of eigenvalues 2~- and 2 [  for each k =  
0 ..... - ( N -  1) such that their product 2~-2[ is equal to the r.h.s, of (A.9b). 

Thus, writing p = - k ,  we have 

Z , = A N ,  4~ F ( N - p ) F ( p + I )  (A.10) 
- - p = o  F ( N +  1) 

which is precisely the result (5.5), derived from the Vandermonde 
formalism of ref. 2. 
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